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Perturbing Diffusions Using the Kernel of its
Infmitesimal Generator
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For general diffusions, Hwang, Hwang-Ma, and Sheu (1993) constructed desirable perturbed drift by
adding a divergence-free perturbing drift (or "conservative drift" with zero divergence), and orthogonal
relative to the starting unperturbed gradient drift. This paper uses the criterion in Hennosilla (1997), as
applied on the perturbing drift when approximating general diffusions. This theoretically yields a class

of perturbing drifts c(x) = yo tP, where tP E ker(L) (the "kernel" of the operator L). L is formally

given by Hwang, Hwang-Ma, and Sheu (1993) as the unperturbed infinitesimal generator of the
unperturbed stOthastit differential equation, modeling a diffusion process. The construction allows
the dissipative case when the divergence of the perturbing drift is not zero, which is not considered in
the conservative perturbing drift of [HHS]. .

Keywonls: diffusion process, kernel, infinitesimal generator, perturbing drift.

1. Introduction

Perturbative stochastic algorithms, heuristics, and their hybrids have become
of significant importance in hastening convergence towards global optimum at
equilibrium for diversely complex and large-scale systems, whose computational
complexity is Np-complete. Improvement of the computational efficiency and
convergence acceleration, especially in the environment of complexity, is the main
objective of stochastic heuristics. In Saab and Rao (1991), a Stochastic Evolution (SE)
algorithm showed significant improvements over Simulated Annealing (SA) in solving
a wide range of large-scale combinatorial optimization problems, especially in the
Np-complete complexity types. Kirkpatrick, GeUatt, and Vecchi (1979), and Nahar,
Sahni, and Shragowitz (1986) discussed the uses of simulated annealing in
optimization Geman and Hwang (1986) and Chiang, Hwang, and Sheu (1987)
provided important theoretical results in using diffusions for global optimization. In
Golberg (1989) and Grefenstette (1993), Genetic Algorithm (GA) was shown as a
robust and efficient search technique, motivated by the mechanics of natural
population genetics, again with direct applications in optimization. Aside from large­
scale combinatorial optimization, many other important applications are in pattern
recognition, image analysis and synthesis, search, scheduling, routing, neural nets,
machine learning, and complex expert systems.

For practical examples of the indispensable uses of stochastic heuristics in
solving complex optimization and approximation problems, we can see the important
applications of SA and GAs in Tesfaldet (1999) in providing heuristic solutions to
known computationally difficult Travelling Salesman Problem of different sizes of
cities, which is known to be Np-complete. Similarly, Pira (1999) also used SA, GA,
and their hybrids in providing acceptable and desirable solutions to the school
timetabling problem, particularly applied to the scheduling of the courses and faculty
assignments in the Department of Mathematics, University of the Philippines,
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concepts to develop a stochastic clustering algorithm for panel data with many
possible applications, such as in polling, pattern recognition in projection pursuit
problems, and unsupervised classification problems related to the application of
another stochastic heuristic known as the ANN (artificial neural networks). Pabico
(1996) used GA to determine cultivar coefficients of crop models, which helped
simplify the seeming chaos in optima.lly choosing the best candidate crops to be
genetically superior than others and to become parents for the next generation of
crops.

Collectively, these classes of special and powerful algorithms, heuristics, and
their hybrids applicable in optimization have underlying stochastic structures, which
include the use of perturbed diffusion processes. Possible improvements of the
different heuristics are not just in their mixing, embedding in one another, or
hybridization, but most all, in the theoretical developments of the individual
heuristics. This paper proposes a theoretical guideline on how to construct the
optimal perturbing drift particularly relevant in the acceleration of general diffusions
that can be used to approximate an underlying probability distribution for the state
space of some stochastic system

2. Main Results

This section gives the main results in this paper. To fully understand these
main results, succinct discussions of the theoretical foundations are presented in the
succeeding sections. Clarifying proofs for the theorems in this section are given in
the Appendix.

For the main result, this paper proposes a perturbing drift c(x) = V'~(x),

where ~ E ker ( L ), involving infinitesimal generators of an approximating
diffusion and its perturbation. We need the following definitions from vector space
homomorphisms ofour relevant infinitesimal generators:

Definition. The kernels ofL and Lbare respectively given by

I. ke r (L) = { f E dom (L) : L f = o ] ,

2. ker (11) = t f E dom (L1) : L1 f = 0 }

Here, infinitesimal generators L and L'i, are the operators' on c2 (R11) of relevant

interest in our study.

Let ( . , .) denote the usual inner product in RD. As in Hermosilla (1997 and

1998a, b), some very useful formulas from differential geometry also motivated the

•

•

By the formal definition of L ,

ker (L) c dom(L) c C2(R11
) c C(R11

) .Similarly,

ker n:b ) c dom(Lb) c C2(R11
) c C(R l1

) .

dealing with subspaces,

•
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construction here: For any appropriately differentiable functions f and g on RD
, and

anydifferentiable vector d(x) , we have the following:

div d = V. d =

gVf
n

" 8di
LJ ox.

i = 1 l.

( d , Vf)

div ( Vf) .

fVg +

f div d +

= V. Vf =

V(fg) =

div (fd) =
ti f

•
For our approximation purposes here, it is sufficient to assume that

o s U(x) E C
2(Rn) ,and as "xii ~ 00, U (x) ~ 00. Actually, in Section 4,

these can lead us to get Z as the norming constant, and with 0 < e- U (x) s 1 ,

can give us the underlying probability density to be given later by equation (I).
Construction of the perturbing drift c(x) using functionals from the kernel of the
unperturbed infinitesimal generator L provides- an alternative perspective to Hwang,

Hwang-Ma, and Sheu(1993) 's construction c(x) = eU (x)g(x) (to be given later in
Proposition 6.3), and c(x) =AVU (x) (as presented inHermosilla (1998a, 1998b) -­
seeTheorem 6.7 here), is given byour fundamental:

2.2 Theorem. Let c(x) = V~(x), for some ~ E dom (L). Then

~ E ker (L) e:> e- U (x) E ker (L~) .

Consequently, density (1) is the equilibrium distribution ofSDE(3).

• As a vector space, for any
51~1 + 52~2 E ker (L) .

the parametrized drift

Sl and S2 E R, and for any ~ I and ¢2 E ker(L) ,
Also, for any ~1 and ~2 satisfying Theorem 2.2,

C
I.2 = CI + c2 SUA. + SUA. - U(s A. + sA.)= 1 y '1'1 2 y '1'2 - y 1 '1'1 2 '1'2

yields
div c1, 2 + (c1, 2, - VU)

= 51 [ div V~l + (Vh, - Vu)] + 52 [ div V~2 + (V~2' - Vu) ]

= 51 [ti~l + (V~l' - Vu)] + 52 [M2 + (V~2' - Vu) ]

= 51L~l + 52L~2 = 51' 0 + 52' 0 = 0 + 0 = 0 .

• *Theorem 2.2 gives a relationship among U, ~,the operators Lb and L by the

equation : L~ e- U (x) = - e-UL~ = 0 •

By self-adjointness of L, we have L*~ = o. Another closer relationship

*among U , Lb, and ~ cannow be described in the following:

•
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2.3 Corollary.3 e - U + ,

Hwang, Hwang-Ma, and

c{x) = eU (x )g{x) satisfying

c{x) = V,{x) here by:

*E ker ( Lb )

Sheu (1993)'s

Proposition 6.3 is

fundamental construction

related to our construction

2.4 Theorem. Let c(x) = eU (x)g(x) satisfy Proposition 6.3. If
, E C2( Rn ) and V,(x) = eU (x)g(x) , then, satisfies Theorem 2.2.

The construction from Hermosilla (1998b, see Theorem 6.7) and the construction here
are related by:

2.5 Theorem. Let c(x) = A VU (x) satisfy Theorem 6.7. If , E C2( Rn )

and V, = A VU (x ) ,then , satisfies Theorem 2.2.

The vector space of desirable perturbing drifts given by:
C = {c(x) =VtP : tP satisfies Theorem 2.2 }

is a subspace of differentiable drifts, since for any c1 = Vh and C2 = V'2 E C

, and for any 0.1 and 0.2 E R , we have c(x) = 0.1c1 (x) + a.2c2 (x) E C, and by
the linearityofthe div and (e,e) operators, and byTheorem 2.2, we have:

div c + ( c , - VU )

= diV(a.1C1 + a.2C2) + ( 0.1c1 + a.2c2 , - VU )

= CL1l div c1 + ( <i , - vo ) ] + a.2[ div c2 + ( c2 , - vo ) ]
= 0.1 • 0 + 0.2 . 0 = O.

Since any perturbing drift c(x) in C is a direction of change from the starting drift
- VU (x) , the gradient of our functional construction c(x) = V<h(x) can give more

intuitive directional interpretations. Here, the corresponding functional

, E ker (L) c dom(L) c C2(Rn) is a smooth surface over Rn
, whose gradient

V, = c is normal to the surface ,. By the linearity of L , the family of functionals

<I> = { cP E ker (L) : V,(x) = c(x)} ,

where c(x) belongs to C , forms a subspace of ker(L), since for any '1 and

'2 E <I>, and 0.1 and (X.2 E R , we have:

L(a.1'1 + 0.2'2) = 0.1L'l + a.2L'2 = 0.1 . 0 + 0.2 . 0 = O.

3 A conjecture from this corollary: Let ,= rU E ker (L) . For appropriate values of r, the

expression 1t(x) = ~ e- U +' = ~ e( r - 1 )U, where R is a norming constant, may
R R

be a family of equilibrium distribution of the process. In fact, for r = 0, the original underlying
distribution in (1), being approximated by the diffusion processes, can be recovered. The case r "I:- 0
is left as an open problem.

•

•

•

•
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Using the semigroups of the associated diffusion processes, Hwang, Hwang­
Ma, and Sheu (1993) theoretically showed the acceleration of the convergence 'of the
perturbed approximating diffusions, as faster than the unperturbed approximating
diffusions, as being determined by the first simple (largest) eigenvalue among all the
negative eigenvalues of the associated unperturbed infinitesimal generator. This
paper characterized the construction of the optimal perturbing drifts as being
determined by the kernel of the unperturbed infinitesimal generator of the
approximating diffusion.

3. Application To Gaussian Diffusions

Applying Theorem2.2 to Corollary 6.4 can lead to constructing the perturbing

drift c = VrP = SVU (x) with ST = - s, which Hwang, Hwang-Ma, and Sheu
(1993) used in accelerating an underlying Gaussian distribution with the potential

function U(x) = ~ ( - Ox , x ), where 0-1 is the symmetric negative-definite
2

covariance matrix to give the unperturbed gradient drift - VU (x) = Dx. Hwang,
Hwang-Ma, and Sheu (1993) constructed C = SO to give

c(x) =SVU(x) = SDx = Cx,

in using the perturbed Ornstein-Uhlenbeck process

d X(t) = BX(t)dt + .J2 d W(t) , t > 0, X(O) = x 0 .

where B = D + C is a stability matrix (i.e., all the real parts of its eigenvalues are
negative), in approximating an underlying Gaussian diffusion. Applying Theorem 6.5
to the Gaussian case, Hermosilla (1998a) gave the following equivalences:

tr e + (ex, ox) = 0 <::::> tr e = 0 and (ex, ox) = 0 , 'V x E Rn

<::::> eTo is a skewsynunetric matrix.

Withthe potential U(x) so knownwith desirable properties, likebeing at least in

e2(Rn) and 0 ~ U(x) ~ 00 , as Ilxll~ 00 , a corresponding construction of a

desirable family of functionals is given by

1
~(x) = - ( ex , x) + k E ker (L) ,

2
where k is any arbitrary real constant. This family of functionals gives

c(x) = V~(x) = ex .

Basically, from Varadhan (1968 and 1980) and Theorem 6.5 as applied to the
Ornstein-Uhlenbeck SOE, the alternative functional construction here gives:
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~ ( Cx, x) + k E ker(L) , k ER
= V¢J(x) = Cx, '<;j X E &n, and

div(V¢J(x» = div(Cx) = tr C .

¢J(x) =
c(x)

d¢J(x) =

Regardless of how C will be constructed, we have

3.1 Theorem; The Ornstein-Uhlenbeck process SDE(l) has a Gaussian

equilibrium with density 1t(x) = i exp{ ~ ( nx , x )} <:> B = D + c such that

CTD is skew-symmetric.

•
4. Stochastic Differential Equations

Stochastic differential equation (to be abbreviated here by SDE) is the
foundational theory that models for the results here, as an approximation of an
underlying random variable.

For a randomvariable x ERn (the state space), let 1f : Rn ~ [ 0,1] be
its fixed probability density given by :

1
1t( x ) = - exp ( - U (x) ) , (1)z ..

where Z is the norming constant. Thepotential function. U(x) is usually given with
niceand desirable properties. The parameters of x are the mean vector

p = E{x} = J x 1f(dx.) ,
X RD •

andthe symmetric covariance matrix

U x = Cov{x} = E{ ( x-Px ' x-Px )}.

In practice, sampling from an underlying distribution given by (1) may be
prohibitively expensive or infeasible. Instead, (1) can be simply approximated by
sampling froma reversible homogeneous diffusion process {X(t)} t ~ 0' a type of

Markovian fluid dynamics, described by SOE:

dX(t) = - VU (X (t)) dt + J2 dW(t), t > 0, X(O) = XQ, (2)

where {W(t)} t ?- 0 is the standard Brownian motion in Rn with parameters of

mean vector E{W(t)} =0, andcovariance matrix Cov{W(t)} =2 In.

•

With only the potential function U(x) usually known to have some desirable
properties (e.g., convexity, differentiability, or integrability), the gradient drift
- VU (x) is the local (global, with convexity being involved) direction in
optimization, which gives the physical-geometric direction towards the optimum of

•
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U(x). However in SOE(2), the gradient - VU (x) will now be affected by the random
perturbation involving the Brownian motion, making it no longer the best direction
for global optimization (e.g., in simulated annealing).

Thus, to improve from the starting gradient drift direction - VU (x) in
accelerating the convergence towards the underlying 1f(x) at equilibrium, Hwang,
Hwang-Ma, andSheu(1993) considered the following approach:

1. studying a family of approximating diffusions with 1f(x) still remaining
as its underlying distribution at equilibrium;

2. constructing new perturbed drifts b(x) from - VU (x) by adding a
perturbing drift c(x), which will still be desirable, say, with smpothness
and/or with compact supports, such that the corresponding approximating
di1fusions would accelerate convergence to 1f(x) at equilibrium; and

3. using the moregeneral SOE

d X(t) = b(X(t» dt + J2 d W(t) , t > 0, X(O) = x 0 , (3)

where b(X(t» should be an improvement from the starting drift - VU(X(t». Note
that SOE (2) is a specific case of SOE (3) with b(X(t» = - VU (x) . With
appropriate regularity condition on the drift vector b(x) (e.g., Lipschitz continuous)
andan associated coefficient

being a constant scalar matrix, stochastic integration (see Chung & William; (1990)
for excellent discussions) applied to the SOE(3) yields a general solution of the
form

t t
X(t) = Xo ... Jb(X(t»dt + J2 Jd W(t).

o 0
This solution hasthe corresponding approximating probability density of the form

p(X(t» = ~ exp{ - ~ ( Ux(X(t) -,ux), X(t) -,ux)} ,

with the corresponding parameters of mean vector

"x. = E{X(t)} =I Rn X(t) dp(X(t» ,

and the.symmetric covariance matrix

"x = Cov{X(t)} = E{ (X(t) -,ux ' X(t) -,ux )} ,
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and the norming constant
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1

R = [ (21r'f det ( CTX)J2

•

The focus of approximating via diffusion processes is to observe the behavior of the
approximation at equilibrium, when time becomes asymptotically large. That is, as
time t ~ 00 ,the rates of convergences of the approximating distribution and its
parameters towards those of the underlying random variable are of general interest,
namely

p(X(t» ~

Px
CTX

1r(X)

[HHS] provided some theoretical results as to the rates of convergences, which is
mainly determined by the first simple eigenvalues of the decreasing and all negative
eigenvalues of the unperturbed infinitesimal generator· of the unperturbed
approximating diffusion process. The excellent expositions of the books and papers
by Varadhan (1968, 1980), Stroock (1969, 1982]), and Taira (1988) can give more
clarifying discussions on the theory and applications ofdiffusionprocesses.

5. Infmitesimal Generators

The infinitesimal generator of a process is the characterizing operator
governing the process. Its eigenvalues are crucial in the convergences of the
distribution and parameters of an approximating process towards those of an
underlying random variable.

The inner product weighted by the invariant probability measure ntdx) =

d1r(x) is given by

•

( f , g)1t ::; r nJR
nf 9 d 1t( x ) , 'r/ f , gEe (R ) •

Diffusion processes are either reversible or irreversible. Reversibility means with
respect to time, best described in the language of the adjoint operator of the
infinitesimal generator associated with the adjoint process.

From SDE (3), [HHS] denoted its infinitesimal generator by Lb, and
considered the invariant probability measure as 1t. By applying the definition of
Nagasawa (1961), and by the differentiability with respect to time t of the

semigroup with representation Tf =. e t Lb of the diffusion process

corresponding to SDE(3), [HHS] gave (time) reversibility in terms of the
infinitesimal generator Lb as follows:

For any fand 9 E dom (Lb) c C (Rn ) ,

•

•
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That is, Lb = L~ , or selj-adjointness of the infinitesimal generator. But for
irreversible processes,

That is, Lb '* L~ , or non-self-adjointness of the infinitesimal generator. The
corresponding formal perturbed infinitesimal generator operator' with representation
involving the Laplacian, gradient, andinner product operators is given by [HHS] as

Lb f = !J. f + (b (x) , V f ) .

In particular, for SDE(2) with b(x) = - VU (x) , [HHS] denoted its formal
unperturbed infinitesimal generator operatorby

L f = !J. f + ( - VU (x), Vf ) .

Taking f and g E dom~) to be desirably smooth and of compact supports, and

performing integration by parts over the compact supports in the state space Rn with
respect to the invariant measure d1r(x) applied to

*[HHS] gavethe formal adjoint L, of the infinitesimal generator L, as

L*b f = !J. f - div ( fb ) .

Varadhan (1968, 1980), Stroock (1969, 1982), andTaira (1988) can givemore
clarifying discussions on the theory of the infinitesimal generators associated with
diffusion processes.

6. Basic Results on Perturbing Drifts

The most fundamental theorem that [HHS]'s and this paper's results are built
uponis given by:

6.1 Theorem

explosion), then

(Varadhan, 1980). If L~ e-u (x) = 0 (and there is no

1t(x) = ~ e- U (x) is the equilibrium distrtbution of 8D£(3).
Z

•

4 With B(Rn) being the Banach space of real-valued, bounded, Borel measurable ftmctions on Rn, we
have the domain being: dom(Lb) C C2(Rn) C C(Rn) C B(Rn).
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Conversely, if 7Z'(x) is theequilibrium distribution and thecoefficients are smooth

enough, then L~ e-u (x) = o.

From this, [HHS] established their set of basic results in approximating general
diffusion processes, such as starting with the following:

6.2 Proposition (proposition 2.1 of [HHS]). For SDE(3) with smooth drift
b(x), ifthediffusion is reversible, then blx}' = - VU (x) .

By reversibility, L = L. For irreversible diffusions, with straightforward
calculations, [HHS] gave their most important result, as the basis of the rest of their
other results, as stated in:

6.3 Proposition (proposition 2.2 of [HHS]). L~ e-n (x) = 0 ifand only

if thedrift can be written as: b(x) = - VU (x) + eU (X)g(x) ,

where g(x) = [91(x), g2(x) , ... , gn (x)F ' div 9 = 0 , and there
existsmooth functions fij , 1 s i < j s n , such that

gi = (- 1 ) i-1{ "" ( _ 1 ) j-1 afij + "" ( _ 1 ) j-2 afij } .
~ ax· ~ ax·

. j<i J i<j J

That is, by sansfying the construction requirements on g(x) the process becomes

irreversible by perturbing the starting gradient drift - Vu (x) by adding a non-zero

drift c(x) = eU (x )g(X) to yield the perturbed drift b(x) = - VU (x) + ctx) .

Note that the construction of the 9i's suggests a skewsymmetric pattern, which
[HHS] exploited in their paper. Hermosilla [H3, 1998)] proposed a non­
skewsymmetric alternative. With Proposition 6.3, another important and crucial
result useful in approximating and accelerating an underlying Gaussian probability
density using the Ornstein-Uhlenbeck process is given by:

6.41 Corollary (Corollary 2.1 of [HHS]). Let c(x) be chosen such that

div c = 0 and (c, vu) = 0, 'r:/ x ERn

Then b(x) = - Vu (x) + c(x) satisfies: Lb e-U (x) = 0 .

For reversible diffusion processes in the absence of the perturbing drift (i.e., c(x) = 0
), [HHS]'s requirements of divergence-free and orthogonal drifts relative to the
starting unperturbed gradient drift - VU (x) , as given by their PDE's in the corollary
above, are obviously satisfied right away. [HHS] used this corollary in constructing
their C = SD, where S is any skew-symmetric matrix, in accelerating Gaussian
diffusions.

•

•

•

•
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•

Actually, without going thru and independently from the construction of
g(x) in Proposition 6.3, and so very different from [lffiS]'s construction, a direct

relationship between the perturbing drift c(x) and the perturbed drift b(x) is this
paper's most fundamental perturbing drift construction criterion:

6.5 Theorem (Theorem 5.2 of [HI]). L~ e-U(x) = 0 ifandoniyifwecan

write the perturbed drift as: b(x) = - VU (x) + e(x), for some perturbing

drift e(x) satisfying: div e + (c, - vc ) = 0, 'V x E Rn .

This gives a more straightforward requirement on the construction of the perturbing

drift ctx) , different from [lffiS]'s more specific construction c = eUg, without

really needing the conditions of conservativeness of g(x) (i.e., div g (x) = 0).
Also, this can include possible dissipative perturbing drifts with di v e (x) *' 0,

which the results of [HHS] did not actually consider.

6.6 Remarks. From Theorem 6.5, let us consider our partial differential equation
(to be abbreviated here byPOE) :

div e + (e, - vu) = 0 <=> dive = ( c , vu ), 'V x E Rn

For n =1 , the POE reduces to the ordinary differential equation

By separation of variables, with k an arbitrary constant (of integration),

de = du <=> e (x) = keu (x) •
e,

•
d
-e(x) =
dx

du n
e (x) - , 'V x E R •

dx

•

•

For n =2, the POE is first order linear in the components of the perturbing drift

c(x) =[c, (x), c2(x) ] T:

with an obvious solution, as suggested from n = 1, given by:

with constants of integration inside the column vector. By finite induction, an obvious
general solution to the given POE is ofthe form
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with constants of integration inside the column vector.

Clearly, (HHS]'s construction ctx) = eU (x)g(x) in Proposition 6.3

satisfies the given POE. Particularly, in Corollary 6.4, their special divergence-free
and orthogonal construction c(x) = S VU (x) , where S is any skew-symmetric
matrix, is a specific case of their construction given in Proposition 6.3. (H3]
constructed c(x) =AVU (x) , where A does not have to be skew-symmetric, as given
m:

6.7 Theorem (Theorem 4.1 of (H3]). Let U(x) E C2(Rn) satisfy the PDE's:

(i)
a 2u [:J 'if 'if x E Rn= 0 , i=1,2, ... ,n,
ax?

~

(ii)
a2u au au

0 'if i , j 'if x E Rn- -- = , =1,2, ... ,n,
aXiaXj aXi aXj

Then c(x) = AVU (x ) , where A be any given square matrix, satisfies the PDE:

div c + (c, - Vp) = 0, V X E Rn .

If 0 s U (x) ~ 00, as IIxll ~ 00, then density (1) is the equilibrium distribution

ofthe SDE(3).

•

7. Conclusions and Recommendations •
This paper's results only provide theoretical guidelines on how to construct the

perturbing drift which can accelerate the convergence of an approximating diffusion
for an underlying probability distribution. (HHS] had shown this acceleration by the
improvement of the eigenvalues of the perturbed infinitesimal generator compared to
the first eigenvalue of the unperturbed infinitesimal generator. The acceleration was
expressed in terms of the sernigroup of the associated diffusions as determined by the
associated infinitesimal generator. Hence, this paper's results further recommends the
use of the kernel of the unperturbed infinitesimal generator in perturbing the
approximating diffusion to accelerate the convergences of the desired parameters and
functions.

As a recommendation, simulations can be performed to see if indeed a
perturbation of the approximating diffusion using the kernel of the unperturbed
infinitesimal generator can accelerate the convergence. If this can be verified
experimentally, the results of this paper can be used to improve some perturbative
stochastic heuristics for complex NP-complete optimization problems, especially in a
parallelized environment, such as in modifying SA, a Monte Carlo simulation
technique, which uses diffusion processes in developing its kind ofheuristics.

,

•
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8. Appendix (proofs of the Theorems)

61

Proof of Theorem 2.4:

Let ~ E C2( Rn ) and

c(x) = eU (x)g(x) = V'~(x)•

•

•

Proof of Theorem 2.2: Suppose there exists a functional ~: Rn ~ Rn ,

where ~ E dom (L) such that c(x) = V'~(x) can give
b(x) = - V'U(x) -+- c (x) = - V'u + V'~ = V'(-u + ~ ), and

div c + (c , - V'U) = div( V'~ ) + (V'~, - V'U) = ~~ + (V'~, - V'U) = L~

<=> ~ E ke r (L) <=> 0 = L~ = div c + (c, - V'U)

<=> L~ e- U (x) = 0 <=> e-U E ker ( L~) ,by Theorem 6.5.

By Theorem 6.1, (1) is theequilibrium distribution ofSDE(3).•

Proof of Corollary 2.3: The perturbed drift can now benicely rewritten as:
b(x) = - vu (x) + V'~(x) = V'( - U + ~ ) •

<=> L1 e- U + ~ = ~e- U + ~ - div ( e- U + ~ V'( - U + ~ ) )

= ~e- U + ~ - div ( V'e- U + ~ )

= ~e- U + ~ _ ~e- U + ~ = 0

<=> e-u+~ E ker(L~).

•
c(x) = eU (x)g(x) satisfy Proposition 6.3. Suppose

aljl U<=> - = e gi' for 1 ~ i ~ n •
oXi

<=> ~(x) = JeUgi dXi E C2( Rn ), for 1 s i s n •

n

L~ = ~~ + ( V'~ , - V'U) = eU ~ o9i = eUdiv 9 = 0 •
LJ ax.

i = 1 J.

Hence, ~ E ker (L) shows that ~ satisfies Theorem 2.2.

•
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Proof of Theorem 2.5:

satisfy Theorem 2.2. Let

acp n au
aXi = L aij ax. <=>

j = 1 J

~(x)

c(x) = Avu (x)

n

<=> ~(x) = aU U(x) + L aij f a~. dXi

j *" i J

for 1 S; i S; n
..n au

= Laij ax.
j = 1 J

n a2~ n n a2u
~~="-2 - " "aL..J a - L..J L..J ij ax.ax.

i = 1 xi i = 1 j =1 1 J

n n au au
L L aij ax. ax.

i = 1 j=l 1 J

( V~ , VU) =

V~ = AVU

=

Consider the following computations:

So, byTheorem 6.7, we get

L~ = ~~ + (V~, - vo ) - a~. ::.) = o.
1 J

Clearly, the construction V~ = AVU satisfies Theorem 2.2.

• •
Proof of Theorem 3.1:

( => ): By converse of Varadhan's theorem, if 1t(x) = i exp{ ~ ( Dx , x )} is

the equilibrium distribution of SDE(1), with the functional construction given in
Section 3, and byTheorem 2.2, wehave

o = L~ e-u (x) = - e -u4 , 'if x E Rn

<=> 0 = L~ = ~ + ( V~ , VU ) = tr C + ( Cx , Dx )

<=> b (x) = - VU (x) + c (x) = - VU (x) + V~(x) = V( - U + ~ )
<=> b (x) = Dx + Cx = (D + e )x = Bx <=> B = D + e

So, from[H2], this leads to CTD being skew-symmetric.
( <= ) : Let B = D + C suchthat CTD is skew-symmetric. From [H2] applied to

the functional construction in Section 3 gives

o = tr C + (ex, DX) = 4, 'if x E R
n

andthe perturbed driftbecomes
b(x) = - VU (x) + c(x) = Dx + Cx = (D + C) x = Bx .

ByTheorem 2.2,

L~x ex{- ~ ( - Dx , x )] = -L~ e-U = - e-UL~ = 0, 'if x E Rn •

•

•
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Thus, by Theorem 6.1, n(x) = i exp{ ~ ( Dx , x )} IS the equilibrium

distribution ofthe SDE(l).
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